Thủ Thuật Hướng dẫn Cách chứng tỏ trung điểm lớp 7 Chi Tiết

Pro đang tìm kiếm từ khóa Cách chứng tỏ trung điểm lớp 7 được Cập Nhật vào lúc : 2022-11-08 19:28:00 . Với phương châm chia sẻ Bí kíp về trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Mình lý giải và hướng dẫn lại nha.

§7. TÍNH CHẤT ĐƯỜNG TRƯNG TRựC
CỦA MÔT ĐOAN THANG
A. Tóm tốt kiến thức và kỹ năng
Định nghĩa đường trung trực
Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó.
Trong hình 3.67, d là đường trung trực của đoạn thẳng AB.
Hình 3.67
Ta cũng nói: A đối xứng với B qua d.
Định lí 1
Điểm nằm trên đường trung trực của một đoạn thảng thì cách đều hai mút của đoạn thẳng đó.
Định lí 2. Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó.
MA = MB => M thuộc đường trung trực của AB.
Tập hợp những điểm cách đều hai mút của một đoạn thẳng là đường trung trực của đoạn thẳng đó.
B. Ví dụ giải toán
Ví dụ. Cho tam giác ABC (AB = AC; A > 90° ). Vẽ đường trung trực của những cạnh AB, AC cắt những cạnh này tương ứng tại I, K và cắt BC lần lượt tại D và E.
Các tam giác ABD và AEC là tam giác gì?
Gọi o là giao điểm của ID và KE. Chúng minh AO± BC.
Giải, (h.3.68)
Vì , ID là đường trung trực cua cạnh AB nên DA = DB do đó tam giác ABD cân tại D.
Vì EK là đường trung trực của cạnh AC nên
EA = EC do đó tam giác AEC cân tại E.
b) Do o thuộc đường trung trực của AB nên OA = OB. Mặt khác o thuộc đường trung trực của AC suy ra OA = oc.
Vậy OB = oc hay o thuộc đường trung trực của BC.
Mà AB – AC nên A thuộc đường trung trực của BC, do đó AO là đường trung trực của BC suy ra AO ± BC.
Nhận xét
Bài toán đã vận dụng tính chất điểm nằm trên đường trung trực thì cách đều hai đầu đoạn thẳng để chứng tỏ hai đoạn thẳng bằng nhau.
Bài toán sẽ khó hơn nếu chỉ có câu b.
c. Hương dẫn giải bài tạp trong sách giáo khoa
p. ‘
s.
X
/
V
/
X
/
X
/ị
X
/
X
/
X
/
X
/
X
X
X
z
X
z
X
z
X
z
z
X
z
-X .
Z–
_x
z
Q.
Bài 44. Giải. Theo định lí thuận ta có MB = 5cm.
Bài 45. Giải, (h.3.69) PM = PN => p. thuộc đường trung trực của đoạn thảng MN.
QM = QN =>Q. thuộc đường trung trực của đoạn thảng MN. M
Vậy PQ là đường trung trực của MN.
Nhận xét. Ta có thêm phương pháp chứng tỏ một đường thẳng là đường trung trực của đoạn thẳng: Nếu hai điểm
p., Q. phân biệt cùng cách đều hai điểm A, B thì đường thẳng PQ là đường trung trực của đoạn thắng AB.
Bài 46. Gidi. (h.3.70) AB = AC => A thuộc đường trung trực của đoạn thắng BC.
DB = DC => D thuộc đường trung trực của đoạn thảng BC.
EB = EC => E thuộc đường trung trực của đoạn thẳng BC.
E
Hình 3.70
Vậy ba điểm A, D, E thẳng hàng.
B
Bài 47.
Bài 48.
Nhận xét. Chúng ta có thêm một phương pháp chứng tỏ ba điểm thảng hàng: Ba điểm cùng thuộc đường trung trực của một đoạn thẳng thì thẳng hàng.
Giai, (h.3.71) M thuộc đường trung trực của đoạn thẳng AB suy ra MA = MB.
N thuộc đường trung trực cúa đoạn thẳng AB suy ra NA = NB.
Vậy AAMN = ABMN (c.c.c).
Gieii. (h.3.72) I thuộc đường trung trực cúa đoạn thẳng ML suy ra IM = IL.
Do đó IM + IN = IL + IN >LN (theo bất đẳng thức tam giác).
Dấu “=” xẩy ra khi I là giao điểm của xy
Hình 3.71
Bài 49.
MA + MB = ME + MB > BE (1).
với LN.
Nếu M trùng với c thì
MA + MB = CA + CB = CE + CB = BE (2).
So sánh (1) và (2) ta thấy điểm c ở vị trí là giao điểm của bờ sông với đường thẳng nối điểm đối xứng của A qua sông với B thì đường ống dẫn nước phải dùng là ngắn nhất.
Bài 50. Giải, (h.3.74) Đường trung trực của đoạn thẳng nối hai điểm dân cư A và B cắt đường quốc lộ tại c, đó là khu vực – cần tìm. Thật vậy c thuộc đường trung trực của AB nên CA = CB.
Bài 51. Giải, (h.3.75)
Chứng minh cách vẽ đó là đúng:
PA = PB => p. thuộc đường trung trực của đoạn thẳng AB.
AC = BC => c thuộc đường trung trực cứa đoạn thắng AB.
Vậy PC là đường trung trực của đoạn thẳng AB, suy ra PC ± AB, tức là PC 1 d.
Một cách khác (h.3.76):
Lấy điểm A bất kì thuộc d, vẽ đường tròn (A; AP).
Lấy điểm B bất kì thuộc d, vẽ đường tròn (B; BP).
Hai đường tròn cắt nhau ở điểm thứ hai Q.. Đường thắng PQ vuông góc với d.
Thật vậy:
AP = AQ => A thuộc đường trung trực của đoạn thẳng PQ.
BP = BQ => B thuộc đường trung trực của đoạn thẳng PQ.
Vậy AB là đường trung trực của PQ suy ra PQ 1 AB.
D. Bài tạp luyện thêm
c
Cho tam giác ABC cân tại A. về phía ngoài của tam giác ABC vẽ những tam giác đều ABD, ACE. a) Chứng minh BE = CD.
Kẻ đường phân giác AF của tam giác ABC. Chứng minh BE, CD, AF đồng quy.
Cho đoạn thẳng BC có I là trung điểm. Trên đường trung trực của BC lấy điểm A khác I.
Chứng minh A ABI = AACI;
Kẻ IH _L AB, IK ± AC. Chứng minh tam giác AHK cân;
Chứng minh KH // BC.
Cho tam giác ABC nhọn. Kẻ BD± AC; CE-L AB. Gọi M là trung điểm cạnh BC. Chứng minh M thuộc đường trung trực của đoạn thẳng DE.
Cho tam giác ABC nhọn, kẻ AH ± BC. Gọi M là trung điểm của BC. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Trên tia đối của tia MA lấy điểm I sao cho MI = MA. Chứng minh BE = CI.
Cho tam giác ABC có AB < AC. Đường trung trực của đoạn thẳng BC cắt AC tại M.
Chứng minh AM + BM = AC.
Lòi giải – Hướng dẫn – Đáp sô
AE = AD* Hình 3.77
=> A ABE = A ACD (c.g.c) =í> BE = CD.
b) AABE= AACD=>cỊ = Bj .
1
Mà tam giác ABC cân nên ABC = ACB => B2 = c2 => tam giác ABO cân => OB = oc o thuộc đường trung trực của BC (1).
Tam giác ABC có AF là đường phân giác =>ẠF là đường trung trực (2).
Từ (1) và (2) suy ra ba đường thẳng AF, BE, CD đồng quy.
(h.3.78)
A AB] = AACI (c.g.c).’
Tam giác ABC cân (AB = AC) => A. = A-> .
A
=> AH = AK => tam giác AHK cân tại A.
AH = AK => A thuộc đường trung trực của HK.
IH = IK => I thuộc đường trung trực cúa HK.
=7 AI là đường trung trực của HK => AI ± HK .
Mặt khác, AI là đường trung trực của BC => AI ± BC
(h.3.79) Tam giác BDC có BDC = 90°;
BM = MC nên DM là đường trung tuyến ứng với cạnh huyền do đó DM = BC .
Tam giác BEC có
HK // BC.
M
Hình 3.79
BEC = 90° và BM = MC
nên EM là đường trung tuyến ứng với cạnh huyền suy ra EM = -^-BC .
Do đó DM = EM, vậy M thuộc đường trung trực của DE.
Nhận XiT’Muon chứng tỏ một điểm thuộc đường trung trực của một đoạn thảng, ta chỉ việc chứng tỏ điểm đó cách đều hai đầu đoạn thẳng đó.
(h.3.80) AABM = AICM (c.g.c)
=>AB = CI (1).
AE 1BH, HA = HE nén BH là đường trung trực của đoạn thắng AE
BE = AB (2).
Từ(l)và (2) ta CÓ BE = CI.
(h.3.81) M thuộc trung trực của BC
=> BM = MC.
Do đó AM + BM = AM + MC =>AM + BM = AC.

://.youtube/watch?v=8fTgd-QMrc4

4080

Clip Cách chứng tỏ trung điểm lớp 7 ?

Bạn vừa tìm hiểu thêm nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Clip Cách chứng tỏ trung điểm lớp 7 tiên tiến và phát triển nhất

Share Link Cập nhật Cách chứng tỏ trung điểm lớp 7 miễn phí

Bạn đang tìm một số trong những Chia Sẻ Link Down Cách chứng tỏ trung điểm lớp 7 miễn phí.

Giải đáp vướng mắc về Cách chứng tỏ trung điểm lớp 7

Nếu sau khi đọc nội dung bài viết Cách chứng tỏ trung điểm lớp 7 vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha
#Cách #chứng #minh #trung #điểm #lớp