Thủ Thuật Hướng dẫn When two versions of the same test are given two different time points what is known as? Chi Tiết

Bạn đang tìm kiếm từ khóa When two versions of the same test are given two different time points what is known as? được Cập Nhật vào lúc : 2022-09-21 20:40:23 . Với phương châm chia sẻ Bí kíp Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi đọc Post vẫn ko hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Ad lý giải và hướng dẫn lại nha.

Nội dung chính

    What Is A/B Testing?How Does A/B Testing Work?How Do You Interpret the Results of an A/B Test?How Do Companies Use A/B Testing?What Mistakes Do People Make When Doing A/B Tests?Which test is used when testing the differences between two means?Which test is used to compare the sample mean two different points of time?What is a repeated measure tWhat test is used to compare two variables?

A/B testing is a way to compare two versions of something to figure out which performs better. While it’s most often associated with websites and apps, the method is almost 100 years old and it’s one of the simplest forms of a randomized controlled experiment. This testing method has risen in popularity over the last couple of decades as companies have realized that the trực tuyến environment is well-suited to help managers, especially marketers, answer questions like, “What is most
likely to make people click? Or buy our product? Or register with our site?”. It’s now used to evaluate everything from website design to trực tuyến offers to headlines to product descriptions. The test works by showing two sets of users (assigned random when they visit the site) different versions of a product or site and then determining which influenced your success metric the most. While it’s an often-used method, there are several mistakes that managers make when doing A/B testing: reacting
to early data without letting the test run its full course; looking too many metrics instead of focusing on the ones they most care about; and not doing enough retesting to be sure they didn’t get false positive results.

    Tweet

    Post

    Share

    Save

    Get PDF

    Buy Copies

    Print

It’s all about data these days. Leaders don’t want to make decisions unless they have evidence. That’s a good thing, of course, and fortunately there are lots of ways to get information without having to rely on one’s instincts. One of the most common methods, particularly in trực tuyến settings, is A/B testing.

To better understand what A/B
testing is, where it originated, and how to use it, I spoke with Kaiser Fung, who founded the applied analytics program Columbia University and is author of Junk Charts, a blog devoted to the critical examination of data and graphics in the mass truyền thông. His latest book is Number Sense: How to Use Big Data to Your
Advantage.

What Is A/B Testing?

A/B testing, its most basic, is a way to compare two versions of something to figure out which performs better. While it’s most often associated with websites and apps, Fung says the method is almost 100 years old.

In the 1920s statistician and biologist Ronald Fisher discovered the most important principles behind A/B testing and randomized controlled experiments in general. “He wasn’t the first to run an
experiment like this, but he was the first to figure out the basic principles and mathematics and make them a science,” Fung says.

Fisher ran agricultural experiments, asking questions such as, What happens if I put more fertilizer on this land? The principles persisted and in the early 1950s scientists started running clinical trials in medicine. In the 1960s and 1970s the concept was adapted by marketers to evaluate direct response campaigns (e.g., would a postcard or a letter to
target customers result in more sales?).

A/B testing, in its current form, came into existence in the 1990s. Fung says that throughout the past century the math behind the tests hasn’t changed. “It’s the same core concepts, but now you’re doing it trực tuyến, in a real-time environment, and on a different scale in terms of number of participants and number of experiments.”

How Does A/B Testing Work?

You start an A/B test by deciding what it is you want to test.
Fung gives a simple example: the size of the subscribe button on your website. Then you need to know how you want to evaluate its performance. In this case, let’s say your metric is the number of visitors who click on the button. To run the test, you show two sets of users (assigned random when they visit the site) the different versions (where the only thing different is the size of the button) and determine which influenced your success metric the most. In this case, which button size
caused more visitors to click?

In real life there are lots of things that influence whether someone clicks. For example, it may be that those on a mobile device are more likely to click on a certain size button, while those on desktop are drawn to a different size. This is where randomization can help — and is critical. By randomizing which users are in which group, you minimize the chances that other factors, like mobile versus desktop, will drive your results on average.

“The
A/B test can be considered the most basic kind of randomized controlled experiment,” Fung says. “In its simplest form, there are two treatments and one acts as the control for the other.” As with all randomized controlled experiments, you must estimate the sample size you need to achieve a statistical
significance, which will help you make sure the result you’re seeing “isn’t just because of background noise,” Fung says.

Sometimes, you know that certain variables, usually those that are not easily manipulated, have a strong effect on the success metric. For example, maybe mobile users of your website tend to click less on anything, compared with desktop users. Randomization may result in set A containing slightly more mobile users than set B, which may cause set A to have
a lower click rate regardless of the button size they’re seeing. To level the playing field, the test analyst should first divide the users by mobile and desktop and then randomly assign them to each version. This is called blocking.

The size of the subscribe button is a very basic example, Fung says. In actuality, you might not be testing just the size but also the color, and the text, and the typeface, and
the font size. Lots of managers run sequential tests — e.g., testing size first (large versus small), then testing color (blue versus red), then testing typeface (Times versus Arial) — because they believe they shouldn’t vary two or more factors the same time. But according to Fung, that view has been debunked by statisticians. And sequential tests are suboptimal because you’re not measuring what happens when factors interact. For example, it may be that users prefer blue on
average but prefer red when it’s combined with Arial. This kind of result is regularly missed in sequential A/B testing because the typeface test is run on blue buttons that have “won” the prior test.

Instead, Fung says, you should run more-complex tests. This can be hard for some managers, since the appeal of A/B tests are how straightforward and simple they are to run (and many people designing these experiments, Fung points out, don’t have a statistics background). “With
A/B testing, we tend to want to run a large number of simultaneous, independent tests,” he says, in large part because the mind reels the number of possible combinations you can test. But using mathematics you can “smartly pick and run only certain subsets of those treatments; then you can infer the rest from the data.” This is called “multivariate” testing in the A/B testing world and often means you end up doing an A/B/C test or even an A/B/C/D test. In the example above with colors and
size, it might mean showing different groups: a large red button, a small red button, a large blue button, and a small blue button. If you wanted to test fonts, too, the number of test groups would grow even more.

How Do You Interpret the Results of an A/B Test?

Chances are that your company will use software that handles the calculations, and it may even employ a statistician who can interpret those results for you. But it’s helpful to have a basic understanding
of how to make sense of the output and decide whether to move forward with the test variation (the new button in the example above).

Fung says that most software programs report two conversion rates for A/B testing: one for users who saw the control version, and the other for users who saw the test version. “The conversion rate may measure clicks, or other actions taken by users,” he says. The report might look like this: “Control: 15% (+/- 2.1%) Variation 18% (+/- 2.3%).” This means that
18% of your users clicked through on the new variation (perhaps your larger blue button) with a margin of error of 2.3%. You might be tempted to interpret this as the actual conversion rate falling between 15.7% and 20.3%, but that wouldn’t be technically correct. “The real interpretation is that if you ran your A/B test multiple times, 95% of the ranges will capture the true conversion rate — in other words, the conversion rate falls outside the margin of error 5% of the time (or whatever
level of statistical significance you’ve set),” Fung explains.

If this is hard to wrap your head around, join the club. What’s important to know is that the 18% conversion rate isn’t a guarantee. This is where your judgment comes in. An 18% conversation rate is certainly better than a 15% one, even allowing for the margin of error (12.9%–17.1% versus 15.7%–20.3%). You might hear people talk about
this as a “3% lift” (lift is simply the percentage difference in conversion rate between your control version and a successful test treatment). In this case, it’s most likely a good decision to switch to your new version, but that will depend on the costs of implementing the new version. If they’re low, you might try out the switch and see what happens in actuality (as opposed to in tests). One of the big advantages to testing in the trực tuyến world is that you can usually revert back to your
original pretty easily.

How Do Companies Use A/B Testing?

Fung says that the popularity of the methodology has risen as companies have realized that the trực tuyến environment is well suited to help managers, especially marketers, answer questions like, “What is most likely to make people click? Or buy our product? Or register with our site?” A/B testing is now used to evaluate everything from website design to trực tuyến offers to headlines to product descriptions. (In
fact, last week I looked the results of A/B testing on the language we use to market a new product here HBR.)

Most of these experiments run without the subjects even knowing. “As a user, we’re part of these tests all the time and don’t know it,” Fung says.

And it’s not just websites. You can test marketing emails or ads as well. For example, you might send two versions of an email to your customer list (randomizing the list first, of course) and figure out which one generates
more sales. Then you can just send out the winning version next time. Or you might test two versions of ad copy and see which one converts visitors more often. Then you know to spend more getting the most successful one out there.

What Mistakes Do People Make When Doing A/B Tests?

I asked Fung about the mistakes he sees companies make when performing A/B tests, and he pointed to three common ones.

First, he says, too many managers don’t let the tests run
their course. Because most of the software for running these tests lets you watch results in real time, managers want to make decisions too quickly. This mistake, he says, “evolves out of impatience,” and many software vendors have played into this overeagerness by offering a type of A/B testing called “real-time optimization,” in which you can use algorithms to make adjustments as results come in. The problem is that, because of randomization, it’s possible that if you let the test run to its
natural end, you might get a different result.

The second mistake is looking too many metrics. “I cringe every time I see software that tries to please everyone by giving you a panel of hundreds of metrics,” he says. The problem is that if you’re looking such a large number of metrics the same time, you’re risk of making what statisticians call “spurious correlations.” In proper test design, “you
should decide on the metrics you’re going to look before you execute an experiment and select a few. The more you’re measuring, the more likely that you’re going to see random fluctuations.” With so many metrics, instead of asking yourself, “What’s happening with this variable?” you’re asking, “What interesting (and potentially insignificant) changes am I seeing?”

Lastly, Fung says that few companies do enough retesting. “We tend to test it once and then we believe it. But even with a
statistically significant result, there’s a quite large probability of false positive error. Unless you retest once in a while, you don’t rule out the possibility of being wrong.” False positives can occur for several reasons. For example, even though there may be little chance that any given A/B result is driven by random chance, if you do lots of A/B tests, the chances that least one of your results is wrong grows rapidly.

This can be particularly difficult to do because it is likely
that managers would end up with contradictory results, and no one wants to discover that they’ve undermined previous findings, especially in the trực tuyến world, where managers want to make changes — and capture value — quickly. But this focus on value can be misguided, Fung says: “People are not very vigilant about the practical value of the findings. They want to believe that every little amount of improvement is valuable even when the test results are not fully reliable. In fact, the
smaller the improvement, the less reliable the results.”

It’s clear that A/B testing is not a panacea. There are more complex kinds of experiments that are more efficient and will give you more reliable data, Fung says. But A/B testing is a great way to gain a quick understanding of a question you have. And “the good news about the A/B testing world is that everything happens so quickly, so if you run it and it doesn’t work, you can try something else. You can always flip back to the
old tactic.”

Which test is used when testing the differences between two means?

Key Takeaways. A t-test is an inferential statistic used to determine if there is a statistically significant difference between the means of two variables. The t-test is a test used for hypothesis testing in statistics.

Which test is used to compare the sample mean two different points of time?

The two-sample t-test is one of the most commonly used hypothesis tests in Six Sigma work. It is applied to compare whether the average difference between two groups is really significant or if it is due instead to random chance.

What is a repeated measure t

The t-test assesses whether the mean scores from two experimental conditions are statistically different from one another. A repeated-measures t-test (also known by other names such as the ‘paired samples’ or ‘related’ t-test) is what you should use in situations when your design is within participants.

What test is used to compare two variables?

The Pearson’s χ2 test (after Karl Pearson, 1900) is the most commonly used test for the difference in distribution of categorical variables between two or more independent groups. Suppose we are interested in comparing the proportion of individuals with or without a particular characteristic between two groups.
Tải thêm tài liệu liên quan đến nội dung bài viết When two versions of the same test are given two different time points what is known as?

What is t-test
T-Test Excel
P-value t-test
T-test in R
One-sample t test
T-test formula

4057

Video When two versions of the same test are given two different time points what is known as? ?

Bạn vừa đọc tài liệu Với Một số hướng dẫn một cách rõ ràng hơn về Video When two versions of the same test are given two different time points what is known as? tiên tiến và phát triển nhất

Chia Sẻ Link Down When two versions of the same test are given two different time points what is known as? miễn phí

Bạn đang tìm một số trong những Chia Sẻ Link Down When two versions of the same test are given two different time points what is known as? Free.

Giải đáp vướng mắc về When two versions of the same test are given two different time points what is known as?

Nếu sau khi đọc nội dung bài viết When two versions of the same test are given two different time points what is known as? vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha
#versions #test #time #points