Thủ Thuật về Tìm m để hàm số đồng biến trên R toán 10 Mới Nhất

Quý khách đang tìm kiếm từ khóa Tìm m để hàm số đồng biến trên R toán 10 được Update vào lúc : 2022-06-24 04:40:06 . Với phương châm chia sẻ Mẹo về trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tìm hiểu thêm nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Ad lý giải và hướng dẫn lại nha.

Prev Article Next Article

://.youtube/watch?v=3QKbHc6nS7E
2K4 ơi! Đăng ký nhận tài liệu Toán hằng ngày tại đây: ➡️ĐĂNG KÝ kênh của Thầy tại đây: …

source

Xem ngay video Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10

://.youtube/watch?v=3QKbHc6nS7E

2K4 ơi! Đăng ký nhận tài liệu Toán hằng ngày tại đây: ➡️ĐĂNG KÝ kênh của Thầy tại đây: …

“Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10 “, được lấy từ nguồn: ://.youtube/watch?v=3QKbHc6nS7E

Tags của Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10: #Toán #Tập #Xác #Định #Tìm #Để #Hàm #Số #Xác #Định #Trên #Đại #Số

Bài viết Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10 có nội dung như sau: 2K4 ơi! Đăng ký nhận tài liệu Toán hằng ngày tại đây: ➡️ĐĂNG KÝ kênh của Thầy tại đây: …

Từ khóa của Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10: hàm số

tin tức khác của Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10:
Video này hiện tại có lượt view, ngày tạo video là 2022-10-10 18:44:33 , bạn muốn tải video này hoàn toàn có thể truy vấn đường link sau: ://.youtubepp/watch?v=3QKbHc6nS7E , thẻ tag: #Toán #Tập #Xác #Định #Tìm #Để #Hàm #Số #Xác #Định #Trên #Đại #Số

Cảm ơn bạn đã xem video: Toán 10 – Tập Xác Định – Tìm m Để Hàm Số Xác Định Trên R – Đại Số 10.

Prev Article Next Article

A. 2

B. 0

C. 4

D. 1

Lời giải:

Chọn D

Xét hàm số

f(x) = x5 – 5×2 + 5(m – 1)x – 8

TH1: f(x) = 0 có nghiệm x0 ∊ (-∞;1) thì hàm số y = |f(x)| không thể nghịch biến trên khoảng chừng (-∞;1).

TH2: f(x) = 0 không còn nghiệm x0 ∊ (-∞;1)

Ta có: f’(x) = 5×4 – 10x + 5(m – 1)

Khi đó y = |x5 – 5×2 + 5(m – 1)x – 8| = |f(x)| =

Nên

Hàm số nghịch biến trên (-∞;1) khi và chỉ khi y’ ≤ 0 với ∀ x ∊ (-∞;1)

Mà m ∊ ℤ nên m = 3

Ví dụ 2. Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = |2×3 – mx + 1| đồng biến trên khoảng chừng (1; +∞)?

A. 2

B. 6

C. 3

D. 4

Lời giải:

Chọn C

Xét hàm số

f(x) = 2×3 – mx + 1

TH1: f(x) = 0 có nghiệm x0 ∊ (1;+∞) thì hàm số y = |f(x)| không thể nghịch biến trên khoảng chừng (1;+∞).

TH2: f(x) = 0 không còn nghiệm x0 ∊ (1;+∞)

Ta có: f’(x) = 6×2 – m

Khi đó y = |2×3 – mx + 1| = |f(x)| =

Nên

Hàm số nghịch biến trên khoảng chừng (1;+∞) khi và chỉ khi y’ ≥ 0 với ∀ x ∊ (1;+∞)

⇒ m ∊ 1; 2; 3

Ví dụ 3. Có bao nhiêu giá trị nguyên của tham số m  nhỏ hơn 10 để hàm số y = |3×4 – 4×3 – 12×2 + m| nghịch biến trên khoảng chừng (-∞; -1)?

A. 6

B. 4

C. 3

D. 5

Lời giải

Chọn D

Xét hàm số f(x) = 3×4 – 4×3 – 12×2 + m ⇒ f’(x) = 12×3 – 12×2 – 24x = 12x (x2 – x – 2)

⇒ f’(x) = 0

BBT:

Nhận thấy: Hàm số y = |f(x)| nghịch biến trên khoảng chừng (-∞; -1) ⇔ m – 5 > 0 ⇔ m ≥ 5.

Lại do  ⇒ m ∊ 5; 6; 7; 8; 9

Vậy có 5 giá trị của m thỏa mãn nhu cầu yêu cầu bài toán.

Loại 2: Tìm Đk tham số m để hàm y = |f(x)| với f(x) là hàm số dạng phân thức hữu tỷ VNĐ biến, nghịch biến trên tập D cho trước.Ví dụ 1. Tính tổng S toàn bộ những giá trị nguyên của tham số m trong đoạn [-10; 10] để hàm số  đồng biến trên (1; +∞).

A. S = 55

B. S = 54

C. S = 3

D. S = 5

Lời giải

Chọn B.

Xét hàm số với x ≠ -m – 2, có

Hàm số đồng biến (1; +∞) khi xẩy ra một trong hai trường hợp sau:

TH1:

TH2:

 

Vậy m ∊ (1; +∞), lại do  suy ra m ∊ 2; 3; 4; 5; 6; 7; 8; 9; 10

Vậy S = 54

Ví dụ 2. Tìm m để hàm số đồng biến trên (1;+∞)

A.

B.

C.

D.

Lời giải

Chọn B

Đặt . ĐK: x ≠ -m

Khi đó

Để hàm số đồng biến trên (1;+∞) ⇔

hoặc

Ta có

Vậy ⅓ < m ≤ 1

Ví dụ 3. Có bao nhiêu số nguyên của tham số m để hàm số đồng biến trên [3; +∞)?

A. 4

B. 5

C. Vô số

D. 6

Lời giải

Chọn A

Tập xác lập: D = ℝ 1

Xét hàm số

Khi đó

Hàm số đồng biến trên [3; +∞) ⇔ y’ ≥ 0, ∀ x ∊ [3; +∞)

Vì m ∊ ℤ ⇒ m ∊ -2; -1; 0; 1

Vậy có 4 giá trị nguyên của tham số m thỏa mãn nhu cầu yêu cầu bài toán.

Loại 3: Tìm Đk tham số m để hàm y = |f(x)| với f(x) là hàm số chứa căn đồng biến, nghịch biến trên tập D cho trước.Ví dụ 1. Cho hàm số . Có bao nhiêu giá trị m nguyên để hàm số nghịch biến trên (0;1).

A. 4

B. 2

C. 3

D. 5

Lời giải

Chọn A

Đặt

Ta có

Do hàm số liên tục tại x = 0; x = 1 nên để hàm số nghịch biến trên (0;1) ta xét 2 trường hợp sau:

Trường hợp 1:

Trường hợp 2:

(vô nghiệm)

Do m nguyên nên m nhận những giá trị sau -3; -2; -1; 0

Ví dụ 2. Có bao nhiêu giá trị nguyên của tham số m ∊ (-5; 5) để hàm số nghịch biến trên (2; 3)?

A. 2

B. 3

C. 5

D. 9

Lời giải

Chọn B

Xét hàm số

Ta có

Cho f’(x) = 0

Ta thấy f’(x) < 0, ∀ x ∊ (2; 3) nên hàm số f(x) nghịch biến trên (2; 3)

Để  nghịch biến trên (2; 3) thì

f(3) ≥ 0

Do m ∊ (-5; 5) nên m = -2; -3; -4

Ví dụ 3. Có bao nhiêu giá trị nguyên của tham số m ∊ [0; 10] để hàm số đồng biến trên khoảng chừng (1;+∞)?

A. 11

B. 10

C. 12

D. 9

Lời giải

Chọn A

Tập xác lập D = ℝ

Xét hàm số

Hàm số đồng biến trên khoảng chừng (1;+∞)

TH1:

f’(x) ≥ 0, ∀ x ∊ (1;+∞)

Đặt t = x – 1, t > 0

Xét

Bảng biến thiên:

Từ BBT ta có

TH2:

f’(x) ≤ 0, ∀ x ∊ (1;+∞)

Đặt t = x – 1, t > 0

Mà nên với mỗi giá trị của m  luôn có mức giá trị của t dương đủ nhỏ để VT của (*) to nhiều hơn 0.

Suy ra không còn mức giá trị nào của m để TH2 thỏa mãn nhu cầu.

Vậy có 11 giá trị nguyên của m thỏa mãn nhu cầu là 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10

Loại 4: Tìm Đk tham số m để hàm y = |f(x)| với f(x) là hàm số lượng giác đồng biến, nghịch biến trên tập D cho trước.Ví dụ 1. Có bao nhiêu giá trị m nguyên để hàm số y = |f(x)| = |x3 – 3×2 +3(mét vuông + 5) x + (12 – 3m2) cosx| đồng biến trên (0; π)

A. 3

B. 5

C. 4

D. Vô số

Lời giải

Chọn B

Đặt h(x) = x3 – 3×2 + 3(mét vuông + 5) x + (12 – 3m2) cosx.

Ta có h’(x) = 3×2 – 6x + 3(mét vuông + 5) – (12 – 3m2) sinx.

⇔ h’(x) = 3(x – 1)2 + 12(1 – sinx) + 3m2(1 + sinx) ≥ 0, ∀ x ∊ (0; π)

Vậy hàm số h(x) luôn đồng biến trên (0; π).

Để y = f(x) đồng biến trên (0; π). Thì h(0) ≥ 0 ⇔ (12 – 3m2) ≥ 0 ⇔ m ∊ [-2; 2]

Kết luận: có 5 giá trị m nguyên thỏa mãn nhu cầu.

Ví dụ 2. Các giá trị của tham số m để hàm số y = |sinx – cosx + m| đồng biến  trên khoảng chừng  là.

A.

B.

C. m > 1

D. m ≥ 1

Lời giải

Chọn B

Xét hàm số f(x) = sinx – cosx + m =

Khi đó y = |sinx – cosx + m| = |f(x)| = . Nên

Hàm số y = |sinx – cosx + m| đồng biến trên khoảng chừng ⇔ y’ ≥ 0, ∀ x ∊

Với

Nên (1) ⇔ f(x) > 0, ∀ x ∊

Ví dụ 3. Cho hàm số y = |sin3x – m.sinx + 1|. Gọi S là tập hợp toàn bộ những số tự nhiên m sao cho hàm số đồng biến trên . Tính số thành phần của S .

A. 1

B. 2

C. 3

D. 0

Lời giải

Chọn A

Trên khoảng chừng , hàm số y = sinx đồng biến

Đặt t = sin x, x ∊ ⇒ t ∊ (0;1)

Khi đó hàm số y = |sin3x – m.sinx + 1| đồng biến trên khoảng chừng  khi và chỉ khi

y = g(t) = |t3 – mt + 1| đồng biến trên (0;1)

Xét hàm số y = f(t) = t3 – mt + 1 trên khoảng chừng (0;1) có f’(t) = 3t2 – m.

+) Khi m = 0

f’(t) = 3t2 > 0, ∀ t ⇒ y = f(t) = t3 + 1 đồng biến trên (0;1) và đồng thời y = f(t) = t3 + 1 cắt trục hoành tại điểm duy nhất t = -1

⇒ y = g(t) = |t3 – mt + 1| đồng biến trên (0;1) ⇒ m = 0 thỏa mãn nhu cầu

+) Khi m > 0

f’(t) = 0 có 2 nghiệm phân biệt

Hàm số y = f(t) = t3 – mt + 1 đồng biến trên những khoảng chừng và

TH1: ⇔ 0 < m < 3

Hàm số y = f(t) = t3 – mt + 1 nghịch biến trên khoảng chừng và đồng biến trên khoảng chừng

⇒ Không có mức giá trị của m để y = g(t) = |t3 – mt + 1| đồng biến trên (0;1)

TH2:  ⇔ m ≥ 3

Để y = g(t) = |t3 – mt + 1| đồng biến trên (0;1) thì t3 – mt + 1 ≤ 0, ∀ x ∊ (0;1)

⇔ mt ≤ t3 + 1, ∀ x ∊ (0;1)

⇒ Không có mức giá trị của m thỏa mãn nhu cầu

Vậy chỉ có mức giá trị m = 0 thỏa mãn nhu cầu

Ví dụ 4. Có bao nhiêu giá trị nguyên của m thuộc [-5;5] để hàm số y = |cos3x – 3m2cosx| nghịch biến trên .

A. 1

B. 11

C. 5

D. 6

Lời giải

Chọn B

Đặt t = cos x, vì x ∊ ⇒ t ∊ (0;1)

Vì t =cos x  là hàm số nghịch biến trên  nên yêu cầu bài toán trở thành tìm m nguyên thuộc [-5;5] để hàm số y = |t3 – 3m2t| đồng biến trên (0;1).

Xét f(t) = t3 – 3m2t, t ∊ (0;1) ⇒ f’(t) = 3t2 – 3m2

TH1: Nếu m = 0 ⇒ f’(t) > 0, ∀ t ∊ (0;1) ⇒ f(t) luôn đồng biến trên (0;1)

Mà f (0) = 0 ⇒ y = |f(t)| luôn đồng biến trên (0; +∞)

⇒ y = |f(t)| luôn đồng biến trên (0;1)

Do đó m = 0 thỏa mãn nhu cầu bài toán (1)

TH2: m ≠ 0 ⇒ f’(t) = 0

*) Với m > 0 , ta có BBT sau:

Từ BBT suy ra hàm số y = |f(t)| luôn đồng biến trên (0; m)

YCBT tương tự (0;1) ⊂ (0; m) ⇔ m ≥ 1 (2)

*) Với m < 0 , ta có BBT sau:

Từ BBT suy ra hàm số y = |f(t)| luôn đồng biến trên (0; -m)

YCBT tương tự (0;1) ⊂ (0; -m) ⇔ m ≤ -1 (3)

Từ (1), (2) và (3) vậy có 11 giá trị nguyên của m thỏa mãn nhu cầu bài toán.

Loại 5: Tìm Đk tham số m để hàm y = |f(x)| với f(x) là hàm số mũ đồng biến, nghịch biến trên tập D cho trước.Ví dụ 1. Có bao nhiêu giá trị nguyên dương của m để y = |9x + 3x – m + 1| đồng biến trên đoạn [0;1]

A. 1

B. 4

C. 3

D. 6

Lời giải

Chọn C

Đặt 3x = t ⇒ t ∊ [1;3] vì t ∊ [0;1]

⇒ t = |t2 + t – m + 1| =

Để hàm số đồng biến trên đoạn t ∊ [1;3] thì

Với mọi giá trị của t ∊ [1;3] thì 2t + 1 > 0 nên

Để y’ ≥ 0, ∀ t ∊ [1;3] thì t2 + t – m + 1 ≥ 0, ∀ t ∊ [1;3]

⇒ m – 1 ≤ t2 + t = g(t) , ∀ t ∊ [1;3]

Vậy có 3 giá trị nguyên 1; 2; 3 thỏa mãn nhu cầu yêu cầu bài toán.

Ví dụ 2. Có bao nhiêu giá trị m nguyên dương và nhỏ hơn 2022 để  hàm số y = |4x + m.2x+1 + m + 2| đồng biến trên khoảng chừng (0;1)?

A. 2022

B. 2022

C. 2

D. 3

Lời giải

Chọn A

Xét hàm số f(x) = 4x + m.2x+1 + m + 2 (1) trên khoảng chừng (0;1)

Đặt t = 2x ⇒ t ∊ (1;2)

Hàm số (1) trở thành h(t) = t2 – 2mt + m + 2 trên khoảng chừng (1;2).

Suy ra h’(t) = 2t – 2m

Ta có y = |f(x)| đồng biến trên khoảng chừng (0;1)

Vì hàm số t = 2x đồng biến trên khoảng chừng (0;1)

Do đó,

Vậy có 2022 số nguyên dương nhỏ hơn 2022 thỏa ycbt.

Ví dụ 3. Cho hàm số  (1). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số nghịch biến trên khoảng chừng (2;4)?

A. 234

B. Vô số

C. 40

D. Không tồn tại m

Lời giải

Chọn C

Đặt

Ta có ⇒ t ∊ (e2; e3), đồng thời x và t sẽ ngược chiều biến thiên.

Khi đó hàm số trở thành y = |t2 + 3t – 2m + 5| =  (2)

Ta có:

Hàm số (1) nghịch biến trên khoảng chừng (2;3) ⇔ hàm số (2) đồng biến trên khoảng chừng (e2; e3)

∀ x ∊ (e2; e3)

⇔ t2 + 3t – 2m + 5 > 0 ∀ x ∊ (e2; e3)

∀ x ∊ (e2; e3)

Có ∀ x ∊ (e2; e3)

Với Đk m là số nguyên dương ta tìm kiếm được 40 giá trị của m.

Ví dụ 4. Có bao nhiêu giá trị nguyên dương m ∊ (-2022; 2022), để hàm số y = |e-x2 + ex2 – m| nghịch biến trên (1;e)?

A. 401

B. 0

C. 2022

D. 2022

Lời giải

Chọn A

Đặt f(x) = e-x2 + ex2 – m ⇒ f’(x) = -2xe-x2 + 2ex2

Ta có y = |f (x)| =

Yêu cầu bài toán ⇔ y’ ≤ 0, ∀ x ∊ (1;e) (*)

Vì x ∊ (1;e) nên -2xe-x2 + 2ex2 = , ∀ x ∊ (1;e)

Khi đó, (*) ⇔ f(x) ≤ 0, ∀ x ∊ (1;e)

⇔ e-x2 + ex2 – m ≤ 0, ∀ x ∊ (1;e)

⇔ e-x2 + ex2 ≤ m, ∀ x ∊ (1;e)

Ta có mức giá trị lớn số 1 của hàm số y = e-x2 + ex2 ∀ x ∊ (1;e) là e-x2 + ex2

Nên m ≥ e-x2 + ex2 ≈ 1618,18

Vậy có 401 giá trị nguyên dương m thỏa mãn nhu cầu.

Loại 6: Tìm Đk tham số m để hàm y = |f(x)| với f(x) là hàm số logarit đồng biến, nghịch biến trên tập D cho trước.Ví dụ 1. Có bao nhiêu giá trị nguyên thuộc khoảng chừng (-100; 100) của tham số m để hàm số y = |ln3x – 4×2 + m| đồng biến trên đoạn [1;e2]?

A. 101

B. 102

C. 103

D. 100

Lời giải

Chọn B

y = |ln3x – 4×2 + m|. Điều kiện x > 0

Xét hàm số g(x) = ln3x – 4×2 + m trên [1;e2]

⇒ g(x) nghịch biến trên [1;e2]

⇒ Hàm số y = |g(x)| = |ln3x – 4×2 + m| đồng biến trên đoạn [1;e2]

⇔ ln3 – 4 + m ≤ 0 ⇔ m ≤ 4 – ln3

Mà m nguyên thuộc khoảng chừng (-100; 100) nên m ∊ -99; -98;…; -1; 0; 1; 2

Vậy có 102 giá trị m nguyên thỏa mãn nhu cầu yêu cầu bài toán.

Ví dụ 2. Có bao nhiêu số nguyên m < 2022 để hàm số y = |ln(mx) – x + 2| nghịch biến trên (1;4)?

A. 2022

B. 2022

C. 1

D. Vô số.

Lời giải

Chọn A

Xét f(x) = ln(mx) – x + 2.

Dễ thấy ∀ x ∊ (1;4): mx > 0 ⇔ m > 0

Khi đó

Do đó f(x) luôn nghịch biến trên (1;4)

Yêu cầu bài tóan tương tự với f(4) ≥ 0 ⇔ ln(4m) – 2 ≥ 0

Vậy m ∊ [2; 2019] có 2022 số nguyên thỏa mãn nhu cầu.

Ví dụ 3. Có bao nhiêu số nguyên m thuộc (-2022; 2022) để hàm số y = |ln(x2 + 2x – m) – 2mx2 – 1| luôn đồng biến trên (0;10)?

A. 4038

B. 2022

C. 2022

D. 2022

Lời giải

Chọn C

Ta xét hàm số f(x) = ln(x2 + 2x – m) – 2mx2 – 1 trên (0;10)

Điều kiện hàm số nghĩa là x2 + 2x – m > 0, ∀ x ∊ (0;10)

⇔ x2 + 2x > m, ∀ x ∊ (0;10) (1)

Ta lại sở hữu x2 + 2x = x.(x + 2) > 0 với ∀ x ∊ (0;10) nên Đk (1) cho ta m ≤ 0 (2)

Đạo hàm do m ≤ 0 và x ∊ (0;10) nên

Suy ra f’(x) > 0 hàm số đồng biến trên (0;10).

Từ đó để hàm số y = |ln(x2 + 2x – m) – 2mx2 – 1| = |f(x)| đồng biến trên (0;10) Đk đủ là f(x) ≥ 0 với ∀ x ∊ (0;10) (3)

+) TH1: Xét m = 0

Khi đó f(x) = ln(x2 + 2x) – 1 có không thỏa mãn nhu cầu (3)

+) TH2: Xét m < 0

Do hàm số f(x) đồng biến nên ta chỉ việc f(0) ≥ 0 ⇔ ln(-m) – 1 ≥ 0 ⇔ -m ≥ e ⇔ m ≤ -e

Từ đó ta được:

⇔ m ∊ -2022; -2022; -2022;…; -3 có 2022 giá trị m thỏa mãn nhu cầu bài toán.

Ví dụ 4. Có bao nhiêu số nguyên của tham số m trong đoạn [-3;3] để hàm số y = |ln(x3 + mx + 2)|  đồng biến trên nửa khoảng chừng [1;3)?

A. 7

B. 4

C. 6

D. 5

Lời giải

Chọn C

Điều kiện xác lập: x3 + mx + 2 > 0

Xét hàm số f(x) = ln(x3 + mx + 2)

Ta có:

Hàm số đồng biến trên nửa khoảng chừng [1;3)

Trường hợp 1:

Trường hợp 2:

Từ hai trường hợp trên suy ra m ≥ -2

Mà m ∊ [-3;3] ⇒ m ∊ -2; -1; 0; 1; 2; 3

Vậy có 6 số nguyên m thỏa mãn nhu cầu YCBT.

4344

Clip Tìm m để hàm số đồng biến trên R toán 10 ?

Bạn vừa Read Post Với Một số hướng dẫn một cách rõ ràng hơn về Review Tìm m để hàm số đồng biến trên R toán 10 tiên tiến và phát triển nhất

Share Link Tải Tìm m để hàm số đồng biến trên R toán 10 miễn phí

Bạn đang tìm một số trong những Chia Sẻ Link Down Tìm m để hàm số đồng biến trên R toán 10 miễn phí.

Thảo Luận vướng mắc về Tìm m để hàm số đồng biến trên R toán 10

Nếu sau khi đọc nội dung bài viết Tìm m để hàm số đồng biến trên R toán 10 vẫn chưa hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Admin lý giải và hướng dẫn lại nha
#Tìm #để #hàm #số #đồng #biến #trên #toán