Hướng Dẫn Sort int list Python – Là gì ở đâu ? Chi tiết

Thủ Thuật Hướng dẫn Sort int list Python – Là gì ở đâu ? 2022

You đang tìm kiếm từ khóa Sort int list Python – Là gì ở đâu ? được Update vào lúc : 2022-11-13 00:02:00 . Với phương châm chia sẻ Bí quyết Hướng dẫn trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tìm hiểu thêm nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Ad lý giải và hướng dẫn lại nha.

Author

Andrew Dalke and Raymond HettingerRelease0.1Python lists have a built-in list.sort() method that modifies the list in-place. There is also a sorted() built-in function that builds a new sorted list from an iterable.In this document, we explore the various techniques for sorting data using Python.Sorting BasicsA simple ascending sort is very easy: just call the sorted() function. It returns a new sorted list:>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5] You can also use the list.sort() method. It modifies the list in-place (and returns None to avoid confusion). Usually its less convenient than sorted() – but if you dont need the original list, its slightly more efficient.>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5] Another difference is that the list.sort() method is only defined for lists. In contrast, the sorted() function accepts any iterable.>>> sorted(1: ‘D’, 2: ‘B’, 3: ‘B’, 4: ‘E’, 5: ‘A’)
[1, 2, 3, 4, 5] Key FunctionsBoth list.sort() and sorted() have a key parameter to specify a function (or other callable) to be called on each list element prior to making comparisons.For example, heres a case-insensitive string comparison:>>> sorted(“This is a test string from Andrew”.split(), key=str.lower)
[‘a’, ‘Andrew’, ‘from’, ‘is’, ‘string’, ‘test’, ‘This’] The value of the key parameter should be a function (or other callable) that takes a single argument and returns a key to use for sorting purposes. This technique is fast because the key function is called exactly once for each input record.A common pattern is to sort complex objects using some of the objects indices as keys. For example:>>> student_tuples = [
… (‘john’, ‘A’, 15),
… (‘jane’, ‘B’, 12),
… (‘dave’, ‘B’, 10),
… ]
>>> sorted(student_tuples, key=lambda student: student[2]) # sort by age
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] The same technique works for objects with named attributes. For example:>>> class Student:
… def __init__(self, name, grade, age):
… self.name = name
… self.grade = grade
… self.age = age
… def __repr__(self):
… return repr((self.name, self.grade, self.age))
>>> student_objects = [
… Student(‘john’, ‘A’, 15),
… Student(‘jane’, ‘B’, 12),
… Student(‘dave’, ‘B’, 10),
… ]
>>> sorted(student_objects, key=lambda student: student.age) # sort by age
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] Operator Module FunctionsThe key-function patterns shown above are very common, so Python provides convenience functions to make accessor functions easier and faster. The operator module has itemgetter(), attrgetter(), and a methodcaller() function.Using those functions, the above examples become simpler and faster:>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)]
>>> sorted(student_objects, key=attrgetter(‘age’))
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] The operator module functions allow multiple levels of sorting. For example, to sort by grade then by age:>>> sorted(student_tuples, key=itemgetter(1,2))
[(‘john’, ‘A’, 15), (‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12)]
>>> sorted(student_objects, key=attrgetter(‘grade’, ‘age’))
[(‘john’, ‘A’, 15), (‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12)] Ascending and DescendingBoth list.sort() and sorted() accept a reverse parameter with a boolean value. This is used to flag descending sorts. For example, to get the student data in reverse age order:>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[(‘john’, ‘A’, 15), (‘jane’, ‘B’, 12), (‘dave’, ‘B’, 10)]
>>> sorted(student_objects, key=attrgetter(‘age’), reverse=True)
[(‘john’, ‘A’, 15), (‘jane’, ‘B’, 12), (‘dave’, ‘B’, 10)] Sort Stability and Complex SortsSorts are guaranteed to be stable. That means that when multiple records have the same key, their original order is preserved.>>> data = [(‘red’, 1), (‘blue’, 1), (‘red’, 2), (‘blue’, 2)]
>>> sorted(data, key=itemgetter(0))
[(‘blue’, 1), (‘blue’, 2), (‘red’, 1), (‘red’, 2)] Notice how the two records for blue retain their original order so that (‘blue’, 1) is guaranteed to precede (‘blue’, 2).This wonderful property lets you build complex sorts in a series of sorting steps. For example, to sort the student data by descending grade and then ascending age, do the age sort first and then sort again using grade:>>> s = sorted(student_objects, key=attrgetter(‘age’)) # sort on secondary key
>>> sorted(s, key=attrgetter(‘grade’), reverse=True) # now sort on primary key, descending
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] This can be abstracted out into a wrapper function that can take a list and tuples of field and order to sort them on multiple passes.>>> def multisort(xs, specs):
… for key, reverse in reversed(specs):
… xs.sort(key=attrgetter(key), reverse=reverse)
… return xs
>>> multisort(list(student_objects), ((‘grade’, True), (‘age’, False)))
[(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] The Timsort algorithm used in Python does multiple sorts efficiently because it can take advantage of any ordering already present in a dataset.The Old Way Using Decorate-Sort-UndecorateThis idiom is called Decorate-Sort-Undecorate after its three steps:
    First, the initial list is decorated with new values that control the sort order.Second, the decorated list is sorted.Finally, the decorations are removed, creating a list that contains only the initial values in the new order.
For example, to sort the student data by grade using the DSU approach:>>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)]
>>> decorated.sort()
>>> [student for grade, i, student in decorated] # undecorate
[(‘john’, ‘A’, 15), (‘jane’, ‘B’, 12), (‘dave’, ‘B’, 10)] This idiom works because tuples are compared lexicographically; the first items are compared; if they are the same then the second items are compared, and so on.It is not strictly necessary in all cases to include the index i in the decorated list, but including it gives two benefits:
    The sort is stable if two items have the same key, their order will be preserved in the sorted list.The original items do not have to be comparable because the ordering of the decorated tuples will be determined by most the first two items. So for example the original list could contain complex numbers which cannot be sorted directly.
Another name for this idiom is Schwartzian transform, after Randal L. Schwartz, who popularized it among Perl programmers.Now that Python sorting provides key-functions, this technique is not often needed.The Old Way Using the cmp ParameterMany constructs given in this HOWTO assume Python 2.4 or later. Before that, there was no sorted() builtin and list.sort() took no keyword arguments. Instead, all of the Py2.x versions supported a cmp parameter to handle user specified comparison functions.In Py3.0, the cmp parameter was removed entirely (as part of a larger effort to simplify and unify the language, eliminating the conflict between rich comparisons and the __cmp__() magic method).In Py2.x, sort allowed an optional function which can be called for doing the comparisons. That function should take two arguments to be compared and then return a negative value for less-than, return zero if they are equal, or return a positive value for greater-than. For example, we can do:>>> def numeric_compare(x, y):
… return x – y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare)
[1, 2, 3, 4, 5] Or you can reverse the order of comparison with:>>> def reverse_numeric(x, y):
… return y – x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric)
[5, 4, 3, 2, 1] When porting code from Python 2.x to 3.x, the situation can arise when you have the user supplying a comparison function and you need to convert that to a key function. The following wrapper makes that easy to do:def cmp_to_key(mycmp):
‘Convert a cmp= function into a key= function’
class K:
def __init__(self, obj, *args):
self.obj = obj
def __lt__(self, other):
return mycmp(self.obj, other.obj) < 0
def __gt__(self, other):
return mycmp(self.obj, other.obj) > 0
def __eq__(self, other):
return mycmp(self.obj, other.obj) == 0
def __le__(self, other):
return mycmp(self.obj, other.obj) <= 0
def __ge__(self, other):
return mycmp(self.obj, other.obj) >= 0
def __ne__(self, other):
return mycmp(self.obj, other.obj) != 0
return K To convert to a key function, just wrap the old comparison function:>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1] In Python 3.2, the functools.cmp_to_key() function was added to the functools module in the standard library.Odd and Ends
    For locale aware sorting, use locale.strxfrm() for a key function or locale.strcoll() for a comparison function.The reverse parameter still maintains sort stability (so that records with equal keys retain the original order). Interestingly, that effect can be simulated without the parameter by using the builtin reversed() function twice:>>> data = [(‘red’, 1), (‘blue’, 1), (‘red’, 2), (‘blue’, 2)]
    >>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
    >>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
    >>> assert standard_way == double_reversed
    >>> standard_way
    [(‘red’, 1), (‘red’, 2), (‘blue’, 1), (‘blue’, 2)] The sort routines are guaranteed to use __lt__() when making comparisons between two objects. So, it is easy to add a standard sort order to a class by defining an __lt__() method:>>> Student.__lt__ = lambda self, other: self.age < other.age
    >>> sorted(student_objects)
    [(‘dave’, ‘B’, 10), (‘jane’, ‘B’, 12), (‘john’, ‘A’, 15)] Key functions need not depend directly on the objects being sorted. A key function can also access external resources. For instance, if the student grades are stored in a dictionary, they can be used to sort a separate list of student names:>>> students = [‘dave’, ‘john’, ‘jane’]
    >>> newgrades = ‘john’: ‘F’, ‘jane’:’A’, ‘dave’: ‘C’
    >>> sorted(students, key=newgrades.__getitem__)
    [‘jane’, ‘dave’, ‘john’]

Clip Sort int list Python – Là gì ở đâu ? ?

Bạn vừa Read nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Video Sort int list Python – Là gì ở đâu ? tiên tiến và phát triển nhất

Chia Sẻ Link Tải Sort int list Python – Là gì ở đâu ? miễn phí

Pro đang tìm một số trong những Chia Sẻ Link Down Sort int list Python – Là gì ở đâu ? miễn phí.

Thảo Luận vướng mắc về Sort int list Python – Là gì ở đâu ?

Nếu sau khi đọc nội dung bài viết Sort int list Python – Là gì ở đâu ? vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Tác giả lý giải và hướng dẫn lại nha
#Sort #int #list #Python #Là #gì #ở #đâu

tinh

Share
Published by
tinh

Recent Posts

Tra Cứu MST KHƯƠNG VĂN THUẤN Mã Số Thuế của Công TY DN

Tra Cứu Mã Số Thuế MST KHƯƠNG VĂN THUẤN Của Ai, Công Ty Doanh Nghiệp…

3 years ago

[Hỏi – Đáp] Cuộc gọi từ Số điện thoại 0983996665 hoặc 098 3996665 là của ai là của ai ?

Các bạn cho mình hỏi với tự nhiên trong ĐT mình gần đây có Sim…

3 years ago

Nhận định về cái đẹp trong cuộc sống Chi tiết Chi tiết

Thủ Thuật về Nhận định về nét trẻ trung trong môi trường tự nhiên vạn…

3 years ago

Hướng Dẫn dooshku là gì – Nghĩa của từ dooshku -Thủ Thuật Mới 2022

Thủ Thuật về dooshku là gì - Nghĩa của từ dooshku -Thủ Thuật Mới 2022…

3 years ago

Tìm 4 số hạng liên tiếp của một cấp số cộng có tổng bằng 20 và tích bằng 384 2022 Mới nhất

Kinh Nghiệm Hướng dẫn Tìm 4 số hạng liên tục của một cấp số cộng…

3 years ago

Mẹo Em hãy cho biết nếu đèn huỳnh quang không có lớp bột huỳnh quang thì đèn có sáng không vì sao Mới nhất

Mẹo Hướng dẫn Em hãy cho biết thêm thêm nếu đèn huỳnh quang không còn…

3 years ago