Thủ Thuật Hướng dẫn How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ Chi Tiết

Pro đang tìm kiếm từ khóa How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ được Update vào lúc : 2022-09-19 18:40:00 . Với phương châm chia sẻ Thủ Thuật về trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi tìm hiểu thêm nội dung bài viết vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Mình lý giải và hướng dẫn lại nha.

Mẹo về How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Chi Tiết

Bạn đang tìm kiếm từ khóa How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? được Cập Nhật vào lúc : 2022-09-19 18:40:23 . Với phương châm chia sẻ Bí quyết Hướng dẫn trong nội dung nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read nội dung nội dung bài viết vẫn ko hiểu thì hoàn toàn hoàn toàn có thể lại Comments ở cuối bài để Tác giả lý giải và hướng dẫn lại nha.

In mathematics, permutation is known as the process of arranging a set in which all the members of a set are arranged into some series or order. The process of permuting is known as the rearranging of its components if the set is already arranged. Permutations take place, in more or less important ways, in almost every area of mathematics. They frequently appear when different commands on certain finite sets are considered.

Nội dung chính

    How many six-letter words can one generate with the letters of the word CANADA?
    Similar Questions
    How many 4 letter word can be formed from the given word daughter such that every word must contain the letter G?
    How many different words can be formed from the letter of the word daughter?
    How many 4 letter words containing G can be formed using letters of daughter repetition not allowed?
    How many 4 letter words can be formed from the letters of the word answer?

Permutation Formula

In permutation

r things are selected from a set of n things without any replacement. In this order of selection matter.

nPr = (n!)/(n – r)!

where

n = set size, the total number of items in the set

r = subset size, the number of items to be selected from the set

Combination

A combination is an act of choosing items from a group, such that (not like permutation) the order of choice does not

matter. In smaller cases, it is possible to count the number of combinations. Combination refers to the union of n things taken k a time without repetition  In combination you can select the items in any order. To those combinations in which re-occurrence is allowed, the terms k-selection or k-combination with replication are frequently used.

Combination Formula

In combination r things are selected from a set of n things and where the order of selection does

not matter

nCr = n!⁄((n-r)! r!)

Here, 

n = Number of items in set

r = Number of items selected from the set

How many six-letter words can one generate with the letters of the word CANADA?

Solution:

Case 1: Where one A can’t be right before or after another A (like AA or AAA)

There are six positions, numbered 1 through 6, to be

assigned to the six letters.

The positions assigned to the 3 A’s may be (1,3,5) i.e., A*A*A, (1,3,6) i.e., A*A**A,

(1,4,6) i.e., A**A*A or (2,4,6) i.e., *A*A*A the asterisks must be substituted with

letters C, N, D in order to abide by the rules. So there are only 4 ways to assign

positions to the 3 A’s.

The remaining 3 letters are distinct, so they can be placed in 3! = 6 different ways.

Therefore, the number of words you can make using 6 letters from

“CANADA” only once

where one A can’t be right before or after another A (like AA or AAA) is

4*6 = 24.

Case 2: Where one A can be right before or after another A (like AA or AAA)

The word ‘CANADA’ contains 3 A’s, 1 C, 1 N, and 1 D.

Number of permutations of the letters of the given word = 6!/3! = 120.

Similar Questions

Question 1: How many five-letter words can one generate with the letters of the

word India?

Solution:

Case 1:- where one I can’t be right before or after another I (like II)

There are five positions, numbered 1 through 5, to be assigned to the five letters.

The positions assigned to the 2 I’s may be (1,3) i.e., I*I**, (3,5) i.e., **I*I or

(2,4,) i.e., *I*I* the asterisks must be substituted with letters N,D,A in order to

abide by the rules. So there are only 3 ways to assign positions

to the 2 I’s.

The remaining 3 letters are distinct, so they can be placed in 3! = 6 different ways.

Therefore, the number of words you can make using 5 letters from “INDIA” only once

where one I can’t be right before or after another I (like II) is

3*6 = 18.

Case 2 :- where one I can be right before or after another I (like II)

There are 60 different ways to arrange the 5 letters in “INDIA”.

Explanation:

The word ‘INDIA’ contains 2

I’s, 1 A, 1 N and 1 D.

Number of permutations of the letters of the given word =5!⁄2!=60.

Question 2: How many Seven-letter words can one generate with the letters of the word America?

Solution:

Case 1:- where one A can’t be right before or after another A (like AA)

There are Seven positions, numbered 1 through 7, to be assigned to the seven letters.

The positions assigned to the 2 A’s

may be (1,3) i.e., A*A**, (3,5) i.e., **A*A,

(2,4,) i.e., *I*I* (4,6) i.e., ***A*A* (5,7) i.e., ****A*A the asterisks must be

substituted with letters M,E,R,I,C in order to abide by the rules. So there are only

5 ways to assign positions to the 2 A’s.

The remaining 5 letters are distinct, so they can be placed in 5! = 120different ways.

Therefore, the number of words you can make using 7 letters from “AMERICA” only once

where one A can’t be right before or

after another A (like AA) is

5×120 = 600.

Case 2 :- where one A can be right before or after another A (like AA)

There are 2520 different ways to arrange the 7 letters in “AMERICA”.

Explanation:

The word ‘AMERICA’ contains 2 A’s, 1 M, 1 E, 1R, 1I and 1C.

Number of permutations of the letters of the given word =7!⁄2!=2520.

How many 4 letter word can be formed from the given word daughter such that every word must contain the letter G?

3! Therefore, there are 840 words possible with the given condition.

How many different words can be formed from the letter of the word daughter?

The number of words formed from ‘DAUGHTER’ such that all vowels are together is 4320.

How many 4 letter words containing G can be formed using letters of daughter repetition not allowed?

Hence the total no. of ways (words) of four letters each of which necessarily contain the letter G = 4* 210 = 840 .

How many 4 letter words can be formed from the letters of the word answer?

Hence, 360 ways of 4 letter words can be formed from the letters of the word ‘ANSWER’ and 120 ways of 4 letter words start with vowels.

Tải thêm tài liệu liên quan đến nội dung nội dung bài viết How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G?

Reply
3
0
Chia sẻ

Share Link Down How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? miễn phí

Bạn vừa Read nội dung nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Video How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? tiên tiến và phát triển và tăng trưởng nhất Share Link Cập nhật How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? miễn phí.

Giải đáp vướng mắc về How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G?

Nếu sau khi đọc nội dung nội dung bài viết How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? vẫn chưa hiểu thì hoàn toàn hoàn toàn có thể lại phản hồi ở cuối bài để Tác giả lý giải và hướng dẫn lại nha

#letter #words #formed #letter #word #daughter #word #letter

Related posts:

4069

Clip How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ ?

Bạn vừa Read nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Clip How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ tiên tiến và phát triển nhất

Share Link Cập nhật How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ miễn phí

Hero đang tìm một số trong những Chia SẻLink Download How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ miễn phí.

Hỏi đáp vướng mắc về How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ

Nếu sau khi đọc nội dung bài viết How many 4 letter words can be formed from the letter of the word daughter so that each word contain letter G? Đầy đủ vẫn chưa hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Mình lý giải và hướng dẫn lại nha
#letter #words #formed #letter #word #daughter #word #letter #Đầy #đủ