Thủ Thuật Hướng dẫn Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ 2022

Bạn đang tìm kiếm từ khóa Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ được Cập Nhật vào lúc : 2022-05-23 19:00:00 . Với phương châm chia sẻ Thủ Thuật về trong nội dung bài viết một cách Chi Tiết 2022. Nếu sau khi Read tài liệu vẫn ko hiểu thì hoàn toàn có thể lại Comments ở cuối bài để Admin lý giải và hướng dẫn lại nha.

Mẹo Hướng dẫn Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Chi Tiết

Pro đang tìm kiếm từ khóa Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm được Update vào lúc : 2022-05-23 19:00:06 . Với phương châm chia sẻ Bí quyết về trong nội dung nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi đọc tài liệu vẫn ko hiểu thì hoàn toàn hoàn toàn có thể lại phản hồi ở cuối bài để Admin lý giải và hướng dẫn lại nha.

    Tải app VietJack. Xem lời giải nhanh hơn!

Quảng cáo

+ Phương trình a. sinx+ b=0 hoặc a.cosx+ b=0 ( với a ≠ 0) có nghiệm nếu:

– 1 ≤ sinx( hoặc cosx) ≤ 1.

+Xét phương trình a.sin2 x + bsinx+ c= 0 hoặc a.cos2 x+ b. cosx+ c= 0 ( với a ≠ 0) :

Đặt sinx= t ( hoặc cosx = t) phương trình đã cho trở thành:

at2 + bt + c= 0 (*)

để phương trình đã cho có nghiệm nếu phương trình (*) có nghiệm t0 và -1 ≤ t0 ≤ 1

Ví dụ 1. Cho phương trình 2sinx+ cos900 = m. Tìm Đk của m để phương trình đã cho có nghiệm?

A. – 2 ≤ m ≤ 2

B. – 1 ≤ m ≤ 1

C. – 4 ≤ m ≤ 4

D. Đáp án khác

Lời giải

Ta có: 2sinx+ cos900= m

⇒ 2sinx + 0= m

⇒ sinx= m/2 (*)

Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1

⇒ để phương trình đã cho có nghiệm khi và chỉ khi:

– 1 ≤ m/2 ≤ 1 ⇒ – 2 ≤ m ≤ 2

Chọn A.

Ví dụ 2. Có bao nhiêu giá trị nguyên của m để phương trình:

có nghiệm

A. 2

B.4

C. 3

D.1

Lơì giải

Ta có:

⇒ sinx – 2sinx = m

⇒ – sinx = m ⇒ sinx= – m

Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1

⇒ để phương trình đã cho có nghiệm khi và chỉ khi:

– 1 ≤ -m ≤ 1 ⇒ – 1 ≤ m ≤ 1

⇒ m∈ -1;0;1

Chọn C.

Quảng cáo

Ví dụ 3. Tìm toàn bộ giá trị của m để phương trình sin2x -2(m-1)sinxcosx-(m-1)cos2x=m có nghiệm?

A.0≤m≤1

B.m > 1

C.0 < m < 1

D.m≤0

Lời giải

Ta có: sin2 x- 2(m -1) sinx. cosx – ( m – 1) cos2 x= m

Ta có:

⇒ 1- cos2x -2 (m- 1) .sin2x- ( m- 1) . ( 1 + cos2x) = 2m

⇒ 1- cos2x -2(m-1)sin2x – m+ 1 – (m-1).cos2x – 2m= 0

⇒ -2(m -1) sin2x – mcos2x= 3m – 2

Phương trình có nghiệm

Ta có:

Chọn A.

Ví dụ 4. Để phương trình: sin2 x+2(m+1).sinx – 3m(m-2)= 0 có nghiệm, những giá trị thích hợp của tham số m là:

A.

.

B.

.

C.

.

D.

.

Lời giải

Đặt t = sinx.

Điều kiện .

Phương trình trở thành: t2 + 2(m+1).t – 3m(m- 2)= 0 (1).

Đặt f(t) = t2 + 2(m+1)t – 3m(m- 2).

Phương trình đã cho có nghiệm thuộc đoạn [-1;1] khi phương trình (1) có một nghiệm thuộc [-1;1] hoặc có hai nghiệm thuộc [-1;1]

Chọn B.

Ví dụ 5: Để phương trình

có nghiệm, Đk thích hợp cho tham số là:

A.

.

B.

.

C.

.

D.

.

Lời giải

Phương trình (1) trở thành 3t2+ 4at – 4= 0 (2).

Để phương trình (1) có nghiệm thì phương trình (2) phải có nghiệm trong đoạn .

Xét phương trình (2), ta có:

nên (2) luôn có hai nghiệm phân biệt trái dấu.

Chọn D.

Quảng cáo

Ví dụ 6: Cho phương trình cos6 x + sin6 x= m. Tìm Đk của m để phương trình đã cho có nghiệm?

A. 1/4 ≤ m ≤ 1

B. 1/2 ≤ m ≤ 1

C. 1/2 ≤ m ≤ 2

D. Đáp án khác

Lời giải

Ta có: cos6 x + sin6 x= m

⇒ (cos2 x+ sin2 x) . (cos4 x – cos2x. sin2 x+ sin4 x) =m

⇒ 1.[ (cos2x+ sin2 x)2 – 3.cos2 x. sin2 x= m

Với mõi ta a luôn có: – 1 ≤ sin2x ≤ 1 nên 0 ≤ sin2 2x ≤ 1

Do đó; để phương trình đã cho co nghiệm khi và chỉ khi phương trình (*) có nghiệm

Chọn B.

Ví dụ 7. Cho phương trình: 4(sin4 x + cos4 x ) -8(sin6 x + cos6 x) -4sin2 4x = m trong số đó m là tham số. Để phương trình là vô nghiệm, thì những giá trị thích hợp của m là:

A.

.

B.

C.

D.

Lời giải

Ta có:

+ Ta tìm Đk của m để phương trình có nghiệm. Rồi từ đó suy ra những giá trị của m để phương trình đã cho vô nghiệm.

(1) có nghiệm thì (2) phải có nghiệm thoả t0 thuộc [-1;1] .

Chọn D.

Ví dụ 8. Cho phương trình cos(x-300) + sin( x+ 600)= m. Tìm Đk của m để phương trình đã cho có nghiệm?

A.0 ≤ m ≤ 1

B. -1 ≤ m ≤ 2

C. – 1 ≤ m ≤ 1

D. Đáp án khác

Lời giải

Ta có: cos(x- 300) – sin(x+ 600) + sinx = m

⇒ cosx . cos300+ sinx. sin300 – sinx. cos600 – cosx. sin600 + sinx= m

⇒ sinx= m (*)

Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1 nên để phương trình đã cho có nghiệm khi và chỉ khi phương trình (*) có nghiệm

⇒ – 1 ≤ m ≤ 1

Chọn C.

Câu 1:Cho phương trình: cosx. sinx – 2m– 2sinx+ m.cosx= 0.Tìm Đk của m để phương trình đã cho có nghiệm.

A.0 ≤ m ≤ 1

B. -1 ≤ m ≤ 2

C. – 2 ≤ m ≤ 1

D. -1 ≤ m ≤ 1

Hiển thị lời giải

Ta có: cosx.sinx – 2m -2sinx + m. cosx = 0

⇒ (cosx. sinx -2sinx) + ( m. cosx – 2m) = 0

⇒ sinx( cosx- 2) + m( cosx- 2) = 0

⇒ ( sinx + m) . (cosx- 2) = 0

Để phương trình đã cho có nghiệm khi và chỉ khi phương trình sinx= – m có nghiệm

⇒ – 1 ≤ m ≤ 1

Chọn D.

Câu 2:Cho phương trình cos2x+ 4cosx+ m= 0. Tìm Đk của m để phương trình đã cho có nghiệm?

A. -7 ≤ m ≤ 1

B. -5 ≤ m ≤ 2

C. – 6 ≤ m ≤ 2

D. – 4 ≤ m ≤ 2

Hiển thị lời giải

Ta có: cos2x + 4cosx + m=0

⇒ 2cos2 x – 1+ 4cosx+ m= 0

⇒ 2cos2 x+ 4cosx + 2 + m-3= 0

⇒ 2(cosx+ 1)2 + m- 1= 0

⇒ 2(cosx+1)2 = 1- m

⇒ (cosx+ 1)2 = (1-m)/2 (*)

Với mọi x ta luôn có: – 1 ≤ cosx ≤ 1 ⇒ 0 ≤ cosx+1 ≤ 2

⇒ 0 ≤ (cosx+1)2 ≤ 4

Do đó để phương trình đã cho có nghiệm khi và chỉ khi phương trình (*) có nghiệm

⇒ 0 ≤ (1-m)/2 ≤ 4 ⇒ 0 ≤ 1-m ≤ 8

⇒ – 7 ≤ m ≤ 1

Chọn A.

Câu 3:Cho phương trình cos( x+ y) – cos( x-y) = m. Tìm Đk của m để phương trình đã cho có nghiệm.

A. -3 ≤ m ≤ 1

B. -2 ≤ m ≤ 2

C. – 3 ≤ m ≤ 1

D. – 4 ≤ m ≤ 2

Hiển thị lời giải

Ta có: cos(x+ y) – cos (x- y) = m

⇔ cosx . cosy – sinx. siny – ( cosx. cosy + sinx. sin y)= m

⇔ -2sinx. sin y = m (*)

Với mọi x; y ta có; – 1 ≤ sin⁡〖x ≤ 1 và-1 ≤ siny ≤ 1

⇒ – 1 ≤ sin⁡〖x.siny ≤ 1 ⇔ – 2 ≤ -2.sinx.siny ≤ 2

Do đó; để phương trình đã cho có nghiệm khi và chỉ khi phương trình ( *)có nghiệm

⇔ – 2 ≤ m ≤ 2

Chọn B.

Câu 4:Cho phương trình sin6 x- cos6 x + cos2x= m. Biết rằng khi m thuộc đoạn [a; b] phương trình đã cho có nghiệm. Tính a+ b

A. – 2

B. -1

C. 0

D. 1

Hiển thị lời giải

Ta có:sin6 x- cos6 x + cos2x= m

⇒ (sin2 x- cossin2 x) . ( sinsin4 x+ sin2 x. cos2 x+ cossin4x)+ cos2x = m

⇒ – cos2x. [ (sinsin2 x+ cossin2 x)sin2 – sinsin2 x.cossin2 x] + cos2x= m

Chon C.

Câu 5:Cho phương trình:

, trong số đó m là tham số. Để phương trình có nghiệm, những giá trị thích hợp của m là

A.

B.

C.

D.

Hiển thị lời giải

Điều kiện: cos2x #0

Ta có: sin6 x+ cos6 x= (sin2 x+ cos2x). (sin4 x- sin2x.cos2x + cos4 x)

= 1. [ (sin2 x+ cos2 x)2 – 3sin2 x.cos2 x] = 1- 3/4 sin2 2x

Khi đó phưởng trình đã cho trở thành:

Chọn C  

Câu 6:Cho phương trình cos( 900- x)+ sin( 1800- x) + sinx= 3m. Có bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có nghiệm

A. 3

B. 4

C. 2

D .5

Hiển thị lời giải

Ta có: cos( 900- x) + sin( 1800 – x) + sinx= 3m

⇒ sinx + sin x + sinx = 3m

⇒ 3sinx= 3m ⇒ sin x= m (*)

Với mọi x ta luôn có: – 1 ≤ sinx ≤ 1 nên tử (*) suy ra phương trình đã cho có nghiệm

⇒ – 1 ≤ m ≤ 1

⇒ Có ba giá nguyên của m là – 1; 0; 1 để phương trình đã cho có nghiệm.

Chọn A.

Câu 7:Cho phương trình: sin2 x+ (m-1) sinx – m = 0. Tìm Đk của tham số m để phương trình trên có nghiệm.

A.m > 2

B. m < 1

C. 1 < m < 10

D.Phương trình luôn có nghiệm với mọi m

Hiển thị lời giải

Ta có; sin2 x+ (m-1)sinx – m= 0

⇒ sin2 x – sinx + m.sinx- m= 0

⇒ sinx(sinx -1) + m.(sinx -1) = 0

⇒ (sinx – 1).(sinx+ m)= 0

Vì phương trình sinx= 1 có nghiệm là x= π/2+k2π

⇒ Phương trình đã cho luôn nhận x= π/2+k2π làm nghiệm

⇒ Với mọi giá trị của m thì phương trình đã cho luôn có nghiệm

Chọn D.

Câu 8:Cho phương trình sin2x+ 2sin2 x+ 4cos2 x=m. Tìm Đk của tham số m để phương trình đã cho có nghiệm?

A. -3√2 ≤ m ≤ 3√2

B. 3- √2 ≤ m ≤ √2+3

C. 2- √2 ≤ m ≤ √2+2

D. -2√2 ≤ m ≤ 2√2

Hiển thị lời giải

Ta có: sin2x+ 2sin2 x+ 4cos2 x= m

⇒ sin2x + 2( sin2 x+ cos2 x) + 2cos2 x = m

⇒ sin2x+ 2.1+ cos2x+ 1 = m

⇒ sin2x + cos2x + 3 = m

⇒ sin2x+ cos2x = m – 3

⇒ √2 sin⁡( 2x+ π/4)=m-3

Với mọi x ta luôn có – 1 ≤ sin⁡( 2x+ π/4) ≤ 1

⇒ – √2 ≤ √2 sin⁡(2x+ π/4) ≤ √2

⇒ – √2 ≤ m-3 ≤ √2

⇒ 3- √2 ≤ m ≤ √2+3

Chọn B.

Câu 9:Để phương trình

có nghiệm, tham số m phải thỏa mãn nhu cầu nhu yếu Đk:

A. -1 ≤ m < -1/4

B. -2 ≤ m ≤ -1

C.0 ≤ m ≤ 2

D.(- 1)/4 ≤ m ≤ 0

Hiển thị lời giải

Chọn A.

Câu 10:Để phương trình:

có nghiệm, tham số a phải thỏa Đk:

A.- 1 ≤ a ≤ 0 .

B. – 2 ≤ a ≤ 2.

C. – 1/2 ≤ m ≤ 1/4.

D. – 2 ≤ m ≤ 0

Hiển thị lời giải

Chọn B.

Xem thêm những dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

://.youtube/watch?v=ieCkGJwl-s8

Giới thiệu kênh Youtube VietJack

    Hỏi bài tập trên ứng dụng, thầy cô VietJack vấn đáp miễn phí!

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.

Nhóm học tập facebook miễn phí cho teen 2k5: fb/groups/hoctap2k5/

Theo dõi chúng tôi miễn phí trên social facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các phản hồi không phù phù thích phù thích hợp với nội quy phản hồi website sẽ bị cấm phản hồi vĩnh viễn.

Reply
7
0
Chia sẻ

Chia Sẻ Link Download Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm miễn phí

Bạn vừa tìm hiểu thêm nội dung nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Video Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm tiên tiến và phát triển và tăng trưởng nhất ShareLink Tải Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm miễn phí.

Thảo Luận vướng mắc về Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm

Nếu sau khi đọc nội dung nội dung bài viết Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm vẫn chưa hiểu thì hoàn toàn hoàn toàn có thể lại phản hồi ở cuối bài để Mình lý giải và hướng dẫn lại nha

#Điều #kiện #để #phương #trình #6sinx #mcosx #vô #nghiệm

Related posts:

4382

Clip Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ ?

Bạn vừa đọc nội dung bài viết Với Một số hướng dẫn một cách rõ ràng hơn về Review Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ tiên tiến và phát triển nhất

Chia Sẻ Link Tải Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ miễn phí

Quý khách đang tìm một số trong những Chia SẻLink Download Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ miễn phí.

Hỏi đáp vướng mắc về Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ

Nếu sau khi đọc nội dung bài viết Điều kiện để phương trình 6sinx mcosx 10 vô nghiệm Đầy đủ vẫn chưa hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Ad lý giải và hướng dẫn lại nha
#Điều #kiện #để #phương #trình #6sinx #mcosx #vô #nghiệm #Đầy #đủ